Source Duration Scales with Magnitude Differently for Earthquakes on the San Andreas Fault and on Secondary Faults in Parkfield, California

نویسندگان

  • Rebecca M. Harrington
  • Emily E. Brodsky
چکیده

We used a comparison of source time function pulse widths to show that a group of earthquakes on the San Andreas fault near Parkfield have a constant duration over a magnitude range of 1.4–3.7. Earthquakes on secondary faults have an increase in duration with magnitude, which is the expected relationship for the usual observation of constant stress drop. The constant duration suggests that fault area is the same regardless of magnitude and that variations in stress drop are due entirely to variations in slip. Calculated stress-drop values on secondary faults range from 0.31 to 14 MPa, and stress-drop values on the San Andreas fault range from 0.18 to 63 MPa. The observation of constant duration on the San Andreas fault is consistent with a model of a locked asperity in a creeping fault. The differences in durations between the events on the San Andreas fault and on secondary faults suggest that earthquakes on the San Andreas fault are inherently different. We speculate that faults with more cumulative displacement have earthquakes that may rupture differently. Furthermore, the differences in source properties between the two populations might be explained by differences in fault surface roughness. Online Material: Station subsets used to evaluate cross-fault seismic velocity contrasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Source Duration Scales with Magnitude Differently For Earthquakes on the San Andreas Fault and on Secondary Faults in Parkfield, CA

We show using a comparison of source time function pulse widths that a group of earthquakes on the San Andreas Fault near Parkfield have a constant duration over a magnitude range of 1.4 to 3.7. Earthquakes on secondary faults have an increase in duration with magnitude, which is the expected relationship for the usual observation of constant stress drop. The constant duration suggests that fau...

متن کامل

Foreshocks and Aftershocks of the Great 1857 California Earthquake

The San Andreas fault is the longest fault in California and one of the longest strike-slip faults anywhere in the world, yet we know little about many aspects of its behavior before, during, and after large earthquakes. We conducted a study to locate and to estimate magnitudes for the largest foreshocks and aftershocks of the 1857 M 7.9 Fort Tejon earthquake on the central and southern segment...

متن کامل

A Laboratory Earthquake-Based Stochastic Seismic Source Generation Algorithm for Strike-Slip Faults and its Application to the Southern San Andreas Fault

Abstract There is a sparse number of credible source models available from largemagnitude past earthquakes. A stochastic source-model-generation algorithm thus becomes necessary for robust risk quantification using scenario earthquakes. We present an algorithm that combines the physics of fault ruptures as imaged in laboratory earthquakes with stress estimates on the fault constrained by field ...

متن کامل

Case Studies of Damage to Tall Steel Moment-Frame Buildings in Southern California during Large San Andreas Earthquakes

On 9 January 1857, a large earthquake of magnitude 7.9 occurred on the San Andreas fault, with rupture initiating at Parkfield in central California and propagating in a southeasterly direction over a distance of more than 360 km. Such a unilateral rupture produces significant directivity toward the San Fernando and Los Angeles basins. Indeed, newspaper reports of sloshing observed in the Los A...

متن کامل

Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations.

Seismic velocity changes and nonvolcanic tremor activity in the Parkfield area in California reveal that large earthquakes induce long-term perturbations of crustal properties in the San Andreas fault zone. The 2003 San Simeon and 2004 Parkfield earthquakes both reduced seismic velocities that were measured from correlations of the ambient seismic noise and induced an increased nonvolcanic trem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009